Feature selection in high dimensional EEG features spaces for epileptic seizure prediction
نویسندگان
چکیده
Digital signal processing of Electroencephalogram (EEG) can support the diagnosis and alarming for the benefit of humans. About one third of all epileptic patients suffer from refractory epilepsy; seizure prediction based on the EEG information content is an area of intense activity since at least twenty years. In this paper we analyze the high dimensional feature space created by a variety of feature extraction methods for prediction of epileptic seizures. We combined features selection algorithm minimum redundancy maximum relevance (mRMR) and Support Vector Machines (SVMs) architectures to study the best features set for seizure prediction. We present the comparison between the classification results obtained by a feature set composed by 147 features and a reduced set based on the first 20-ranked features using mRMR scores. We critically discuss the composition of the feature subset. The results suggest some patient specificity in features and channel selection. The best models lead us to hypothesize the preference for wider preictal periods.
منابع مشابه
Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملEpileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier
Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...
متن کاملEfficient Feature Selection Using a Hybrid Algorithm for the Task of Epileptic Seizure Detection
Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection t...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011